mud wt

Injection Well Evaluation

This sheet calculates the pressure at the base of the USDW, tubing friction loss, fracture pressure, allowable pressure increase at the injector, cone of influence, and maximum pressure rise at various observation points for the designated years of injection. The injector is centered at (0',0'). This spreadsheet also calculates injection pressure increase at several observation points around the injector for 3 different injection timeframes. Note: friction loss is calculated with Hazen Williams correlation using roughness factor for steel pipe; dimensionless variables were calculated with equations from SPE Monograph 5, Appendix C; and mud filled abondoned wellbores are assumed to have a 20#/100 ft^2 gel strength and 50 ft

nput Parameters		Injection Well Calculations			
Facility: OS 5667	Injection Permit Life (yrs):				
Pi (current static resv. pressure in psia): dated 1993	800	Injection Permit Life (hrs):			
n (ft) (net thickness):	450	Proposed Injection Rate (gpm):			
porosity (fraction): -Arbuckle	0.1	Proposed Injection Rate (bpd):			
inj (ft) (wellbore radius of injector):	0.3	Tubing size (in.)			
ct (1/psi) (total compressibility=rock+fluid):	1.00E-06	Assumed Fracture Gradient (psi/ft)			
viscosity (cp):	0.8	Opposing Pressure at USDW Base (psi):			
Depth to USDW base (ft):	160	Allowable Pressure Rise in Brine Filled Well (ps			
Depth to groundwater (ft):	30	Allowable Pressure Rise in Mud Filled Well (psi)			
Reservoir fluid SG:	1.066	Pressure rise allowed by mud gel strength (psi):			
Min. aband. well diameter (in.)	9	Abandoned Well Condition (brine or mud)			
Min. aband. well mud wt. (lb/gal):	9	Fluid column w/ injection tubing fluid filled (psi			
Гор of injection interval (ft):	1813	Tubing Friction Loss at Proposed Inj. Rate (psi)			
Permeability (md):	20	Estimated Fracture Pressure			
Fransmissibility (md-ft/cp) (k*h/viscosity):	11250	Allowable Pressure Increase at Injector (psi):			
		Estimated Permit End Press. Incr. at Injector (ps			
ransmissibility = kh/viscosity		Critical Pressure for Cone of Influence (psi):			
Critical Pressure		Cone of Influence at Permit End (ft):			

"brine": head fresh water + head between base USDW & top injection zone - initial formation pressure "mud": mud gravity * 0.433 *(top injection zone - 50' fall back) + gel strength - initial formation pressure

Gel Strength = ((0.00333*20*Toplnj)/Well_diam)

Dimensionless Time, td = 0.0002637*k*t / (porosity)(viscosity)(ct)(rinj^2)
Dimensionless Pressure, pd = Critical pressure*transmissibility / 141.2*rate

Dimensionless Radius, rd = sqrt[td/exp((pd*2)-.80907)]

Dimensionless Radius, rd = r / rinj

Dimensionless Time: 6.42E+10 4.655 Dimensionless Pressure: Dimensionless Radius: 3613.3

9,6

Radius of ZEI (Cone of Influence at permit end) = wellbore radius * dimensionless radius

X & Y location of observation	pts - distance from in	jection well located at	(0,0)

х	Y	Radial distance from	ual a/aimi	time 1	(4-1/140)4	Press.	time 2	(#d/#dA0)0	Press.	time 3	(#d/#dA0)2	Press. Rise
	-	well, r (feet)	rd=r/rinj	(yrs)	(td/rd^2)1	Rise (psi)	(yrs)	(td/rd^2)2	Rise (psi)	(yrs)	(td/rd^2)3	(psi)
0	0	0,3		1	6.42E+09		5	3.21E+10	51.8	10	6.42E+10	53.
100	0		333,3333	1	5.78E+04		5	2.89E+05	27.7	10	5.78E+05	29.
500	0		1666.667	1	2.31E+03		5	1.16E+04	21.0	10	2.31E+04	22.
1320	0	1320.0	4400	1	3.31E+02	13.7	5	1,66E+03	17.0	10	3.31E+03	18.
2640	0	2640.0	8800	1	8,29E+01	10,8	- 5	4.14E+02	14.2	10	8.29E+02	15,
5280	0	5280.0	17600	1	2.07E+01	8.0	5	1.04E+02	11.3	10	2.07E+02	12.
8000	0		26666.67	1	9.02E+00		5	4.51E+01	9.6	10	9.02E+01	11.
0	500		1666.667	1	2.31E+03	17.7	5	1,16E+04	21.0	10	2.31E+04	22.
0	1320	1320.0	4400	1	3,31E+02	13.7	5	1.66E+03	17.0	10	3.31E+03	18.
0	2640	2640.0	8800	1	8.29E+01	10.8	5	4.14E+02	14.2	10	8.29E+02	15.
0	5280	5280.0	17600	1	2.07E+01	8.0	5	1.04E+02	11.3	10	2.07E+02	12.
0	8000	8000.0	26666.67	1	9.02E+00	6.2	5	4.51E+01	9.6	10	9.02E+01	11.
-500	0	500.0	1666.667	1	2.31E+03	17.7	5	1.16E+04	21.0	10	2.31E+04	22.
-1320	0	1320.0	4400	1	3.31E+02	13.7	5	1.66E+03	17.0	10	3.31E+03	18.
-2640	0	2640.0	8800	1	8.29E+01	10.8	5	4.14E+02	14.2	10	8.29E+02	15.
-5280	0	5280.0	17600	1	2.07E+01	8.0	5	1.04E+02	11.3	10	2.07E+02	12.
-8000	0	8000.0	26666.67	1	9.02E+00	6.2	5	4.51E+01	9.6	10	9.02E+01	11.
0	-500	500.0		1	2.31E+03	17.7	5	1.16E+04	21.0	10	2.31E+04	22.
0	-1320	1320.0	4400	1	3.31E+02	13.7	5	1.66E+03	17.0	10	3.31E+03	18.
0	-2640	2640.0	8800	1	8.29E+01	10.8	5	4.14E+02	14.2	10	8,29E+02	15.
0	-5280	5280.0	17600	1	2.07E+01	8.0	5	1.04E+02	11.3	10	2.07E+02	12.7
0	-8000		26666.67		9.02E+00	6.2	5	4.51E+01	9.6	10	9.02E+01	11.0
1000	1000	1414.2		i	2.89E+02	13.4	5	1.44E+03	16.7	10	2.89E+03	18.5
	2000	2828.4			7.22E+01	10.5	5	3,61E+02	13.9	10	7.22E+02	
2000 3000	3000		9428.09			8.9	5	1,60E+02	12.2	10	3.21E+02	15.0 13.0
	_		14142.14	1	3.21E+01	7.7	5			10		12.0
4000	4000		18856.18		1.80E+01		_	9.02E+01	11.0		1.80E+02	*********************
v	Y	Radial distance from		time 1	(A-1/m-1 A O) 4	Press.	time 2	(td/~d \ 0) 0	Press.	time 3	(#d/#dA0)0	Press. Rise
Х	_	well, r (feet)	rd=r/rinj	(yrs)	(td/rd^2)1	Rise (psi)	(yrs)	(td/rd^2)2	Rise (psi)	(yrs)	(td/rd^2)3	(psi)
5000	5000	7071.1	23570.23	1	1.16E+01	6.7	5	5.78E+01	10.1	10	1.16E+02	11.5
-1000	1000	1414.2		1	2.89E+02	13.4	5	1.44E+03	16.7	10	2.89E+03	18.2
-2000	2000	2828.4	9428.09	1	7.22E+01	10.5	5	3.61E+02	13.9	10	7.22E+02	15.3
-3000	3000	4242.6	14142.14	1	3.21E+01	8.9	5	1.60E+02	12.2	10	3.21E+02	13.0
-4000	4000	5656.9	18856.18	1	1.80E+01	7.7	5	9.02E+01	11.0	10	1.80E+02	12.4
-5000	5000	7071.1	23570.23	1	1.16E+01	6.7	5	5.78E+01	10.1	10	1.16E+02	11.9
1000	-1000	1414.2	4714.045	1	2.89E+02	13.4	5	1.44E+03	16.7	10	2.89E+03	18,2
2000	-2000	2828.4	9428.09	1	7.22E+01	10.5	5	3.61E+02	13.9	10	7.22E+02	15.3
3000	-3000	4242.6	14142.14	1	3.21E+01	8.9	5	1.60E+02	12.2	10	3.21E+02	13.0
4000	-4000	5656.9	18856.18	1	1.80E+01	7.7	5	9.02E+01	11.0	10	1.80E+02	12.
5000	-5000	7071.1	23570.23	1	1.16E+01	6.7	5	5.78E+01	10,1	10	1.16E+02	11.
-1000	-1000	1414.2		1	2.89E+02	13.4	5	1.44E+03	16.7	10	2.89E+03	18.2
-2000	-2000	2828,4	9428.09	1	7.22E+01	10.5	5	3.61E+02	13.9	10	7.22E+02	15.
2000	-3000		14142.14	1	3.21E+01	8.9	5	1.60E+02	12.2	10	3.21E+02	13.
3000	-3000	4242.0										
	4000	FOEC O	100FC 10									
-3000 -4000 -5000	-4000 -5000	5656.9 7071.1	18856.18 23570.23	1 1	1,80E+01 1,16E+01	7.7 6.7	5	9.02E+01 5.78E+01	11.0 10.1	10	1.80E+02 1.16E+02	12.4 11.5

injector

10 87600

9.6

330.0 2.375 0.75

56,29 19.28 38.20

13.42

brine

836.840914

2.0

520.9

53.2

19,28